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SECTION I
INTRODUCTION AND OUTLINE

In recent times there have been many attempts at extending
the analysis of stationary time series to classes of nonstationary
cases. The fundamental spectral analysis, so useful for the
stationary series, does not play such a central role in the general
study. The necessary tools and methods for an analysis of the
latter are different and altogether less refined, and still appear
more complicated. However, from the point of view of applications,

the analysis of nonstationary time series is perhaps more realistic.

§
Consequently, some results based on certain asymptotic consider- ;
ations related to a 'correlation characteristic' (to be defined ‘
below) will be presented in this paper. Also included is some E
other work on classes of linear stochastic (or autoregressive) '

equations in discrete as well as continuous time. An

outline of the results will be useful here, since it gives the
reader a bird's-eye view of the treatment.

Instead of totally abandoning the spectral point of view,
Kampé de Fériet and Frenkiel in 1959 have, in a remarkable paper,
introduced a class of nonstationary time series (to be called
class (KF) hereafter) for its covariance analysis (cf. [1]).
There they studied in considerable detail a model which is of
the form signal plus noise, where the signal is a time series with
zero means and a periodic covariance and the noise is a stationary
series with zero mean. A detailed numerical study was made to

illustrate the usefulness of this class. Also only slightly

SRR S LT S EX LAY




AT T

L TR A

later, but independently, Parzen [2] has considered such a model
briefly and termed it "asymptotically stationary.' This class (KF)
has been discussed in some detail by Bhagavan [3] in his recent
dissertation. There one of his main results asserts that the
class of harmonizable time series belongs to class (KF) , and
then an ergodic theorem was obtained. In Section II below, the
class (KF) has been further analyzed and a more inclusive (new)

almost harmonizable class was introduced and shown to be of

class (KF) . This contains the harmonizable case, but the gene-
ralization gives a better insight, and shows the simplicity of
class (KF) . The consistency of an estimator of the averaged
mean function and a weak law of large numbers are established.

It is of interest to remark that the classical spectral theory

of stationary’time series again plays a role here---perhaps just-
ifying the terminology of Parzen's noted above. There are some
relations between a class of series introduced by Cramér in (1951),
(cf. [4]), called class (C) , and (KF) though either does not
include the other. A comparison of these approaches is also ex-
pounded here, and these relations reappear at many places in the
rest of the paper.

Section III is devoted to the covariance analysis of time
series governed by difference schemes with not necessarily con-
stant coefficients. Such equations are of interest in treating
trend and seasonal variations in various situations which are

typically (strongly) nonstationary (cf. Hurwicz [5]). Under

some conditions on these coefficients, it is shown that such

N A ——— ——
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generated series belong to class (KF) . 1In general many do not.
Some of the latter cases have been analyzed in detail. In order
to understand the dependence, approximate recursion equations for
sample covariances, which are the sample analogs of the ancient
Yule-Walker equations, are presented when the coefficients have
linear "time trend.'" For a descriptive study, correlograms ( =
the graph of (k’pt(k)) where ot(k) is the correlation of Xt
with Xt+k ) and certain approximations are considered. Even here,
the computations become involved, but what may be expected in
higher order schemes is evidenced. Some other results on esti-
mation and limit behavior of normalized sums are also included.
The continuous time analog of the preceding work refers to
the behavior of flows. This is considered in some detail in (the

final) Section IV. The corresponding schemes are stochastic dif-

ferential equations whose coefficients are functions of time. The
importance of a class of these schemes in industrial applications
has been reported by Hartley [6]. If the coefficients are con-
stants, they represent the motion of a simple harmonic oscillator,
driven by random (or white noise) disturbance, and such a model
has already been discussed in 1943 (and in earlier classical
studies) in the important long article of Chandrasekhar [7]. The
latter type of equations have been analyzed by Dym [8], and
classified. The general time dependent case is much more in-
volved, and some properties of such an equation are studied.

Several results from the theory of ordinary differential equations

have special interest here. The basic sample function continuity
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of the solutions and the conditions under which they belong to
class (KF) and the fact that they always belong to class (C) ,
among others, are established. A specialization of the case when
the coefficients are constants is illustrated, and the correlogram
is analyzed for its asymptotic behavior.

The results presented show how new problems must be attacked
for a more complete understanding of these time series. In par-
ticular, the classification of the solutions, analogous to [8],
will be very interesting. Some aspects of this for vector valued
time series have been already given by Goldstein [9], but the
sample function behavior when the disturbance is white noise, as
in [8], has not been done. The feasibility of such a study is
strongly indicated in the present work. Similarly, many other J
connections and scenic byways are noted but not pursued. Hope-
fully such work will be considered in the future.

It is recognized that, especially in time series, no result

can be taken without adequate demonstration (or at least the ex-

planations that can easily be made precise). For this reason
essentially all proofs appear along with the statements of results
if an adequate reference is not at hand. Consequently, readers
primarily interested in the results are advised to skip the proofs 4

and proceed with the statements, discussions, and remarks of the

paper.
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SECTION II

A GENERAL CLASS OF NONSTATIONARY TIME SERIES

let X = {Xt,tEI{} be a second order (real or complex) time
series with zero mean, and covariance K(s,t) = E(Xsit) . (The
expectation E 1is on a fixed probability space on which Xt is

defined.) Suppose that the K(-,.) satisfies the following

condition:
(KF) r(h) = lim-,%f K(s-g—,s%) ds
T-= - [h|/2
g Ltm I il de = Dimn k) ), BeR
T TUO T T

where the limit is assumed to exist. This condition was intro-
duced by Kampé de Fériet and Frenkiel [1]. The class of time
series X satisfying the above condition will be called the
class (KF) , and it is analyzed in detail in what follows. It

: will become clear that this class (KF) 1is sufficiently general

and is very useful in applications. The interest in this defi-

nition stems from the positive definiteness of T and r , as }
. stressed in [1]. 1
f 3 It is clear that, if X 1is (real and) stationary, so that
i K(s,t) = K(t-s) , then r(h) = K(h) = K(/h|) . Thus every
i< stationary process is in (KF) . If X = Y+Z , where Z =
f

{Zt,t”ﬁt} is stationary (with zero mean) and Y = {Yt,t'R}
has zero mean and a periodic covariance (i.e. KY(s+hO,t+h0) =

KY(s,t) for some ''period hy "y E(Ytzt) = 0, t€R, then also
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Xcclass (KF) , but now X is evidently not stationary. In this
representation, the output X is composed of the "signal' Y
and '"moise" Z which are mutually uncorrelated, and the model
describes a communication channel. An elementary example of the

Y-process is the following:

Yt = q cos 20t , EEIR (1)
where E(a) =0 , E(az) = 32>O . Then Y 1is nonstationary and
9 .
KY(s,t) = %T{cos 7(t+s) - cos(t-s)] . In this example rT(h) of
2

(KF) 1is given by rT(h) = Kz(h)+¢%—cos mh+o(T) so that Xctclass
(KF) . Also if KX(t,t+h)4a(h) as t-= for each h where
-»<a(h)<e , then (by the L'Hospital rule) it follows that
Xcclass (KF) . Another example of X 1in (KF) 1is the important

nonstationary class called the harmonizable time series. Namely,

if the covariance of X 1is denoted by KX , then it is repre-

sentable as:

a®

hoo i =1t .2
Kgls,t) = [7 [° P57 ey 0 ) 2)

o =
where v (-,+) 1is a covariance function of bounded variation on
the complex plane (or on the square n,m]x(-7,7] 1if the time
series is of discrete parameter). KX is then called a harmo-
nizable covariance. That this series X is in class (KF) is
nontrivial and it is one of the main results of the dissertation
[3]. There is a more inclusive class of Cramér, to be called
class (C) , generalizing (2); it will be recalled here for com-

parison with (KF) and for later use.
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The time series X = ,Xt,t'ﬂ{} is said to be of class (C) .

if it has mean zero and covariance KX , representable as:

Rye(s,6) = [ [7 s, )EEMIa%y () 3)

v Y
-0 -0

where v 1is a covariance function of bounded variation on each
finite domain of the complex plane, and {g(t,-),t“R} 1is a
family such that the integral in (3) exists. KX is then called
a covariance of type (C) . Thus if v 1is of bounded variation,
gls . A) = eiSR , then (3) reduces to (2). The problem now is to
find conditions on g and vy 1in order that X of <class (C)
is in class (KF) . The c¢lass (C) has been analyzed from the
point of integral representation by the author [10], and con-
siderable information is available for this family.

For comparison, it will be useful to state the above-noted

result from [3] in the following form. It is seen to be included

in a more general result proved next.

Proposition 2.1. Let K be a continuous harmonizable covariance.

Then

-l
R(h) = limz " IMIR(e, e+|h])de heR %)
IR

exists and R(:) 1is a stationary covariance so that

R(h) = [ ePrar@n) |, KER (5)

for a unique distribution F ( F(+)-F(-») = R(0) ). Moreover,
F(U) = v(>,®) = ¥(-},-3) (6)

where vy 1is the covariance given in (2).

B e e
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In the discrete case there is a corresponding formula (anal-
ogous to (4)-(6)), but the relation (6) can be given a more de-
tailed form using the possible discontinuities of vy . (It was
treated in {3].) The proof of this result uses estimates of
trigonometric sums for integrals on bounded rectangles arising
from {eitx,tfﬂi} . In the case of (3), it is clear that one
nas to restrict the family {g(t,-),t€R} regarding its growth
in relaction to vy . In general, the limit (4) for K's of type
(C) need not exist. Thus the class (C) 1is not included in
class (KF) nor is the class (KF) contained in the class (C)
(See the example in remark following Theorem 4.2.) Some inter-
esting conditions on g will be obtained so that those time
series are in class (KF)

Let g of (3) be a bounded (jointly) continuous function.
It will now be shown that, if g(-,r) 1is almost periodic for
almost all ) (in particular, g(t,)) = eit\ is automatically
included), then the corresponding class (C) ccvariance actually
is in (KF) so that (4) and (5) are implied. It is necessary to
recall the definition of almost periodicity of g, depending on

the parameter X, to demonstrate the preceding statement.

3

Definition. Let D c R" be an open (or a compact) set. A con-

tinuous complex function f on RxD 1is said to be almost peri-

odic (a.p.) on R uniformly relative to D 1if for each compact

set Sc D, f(-,x) is almost periodic for each x in §S ,

i.e., for any ¢ >0 , and each compact set S < D , there is a

’

number Lo = zo(e,S)>0 , such that each interval I « R of




length 20 contains a number 141 for which
[E(etr,x)-£(t,x)| =¢ , tcR ,x°S . (7)

The 71 1is called an s-translation number of £

It can be shown that the set of all a.p. functions de-
pending on a parameter, satisfying (7), forms an algebra, and if
(f(t,x)fras>0 for xS e D, and all t"R , then % is also
an a.p. function of the same kind. Thus the set ﬁeit},t’m.;*€mj
is included in the above, and in fact properly. For an exposi-
tion of this class, the reader may consult Yoshizawa ([11],
Chapter 1). If D = {t} 1is a single point, then this definition
reduces to the classical concept of a.p. functions of Bohr. Also
observe that an a.p. function is only locally (i.e. on bounded

intervals) integrable. 1In fact, it is bounded for each x°S ¢ D

The following is the desired generalization.

Proposition 2.2. Let K be a covariance function of type (C), i.e.
one which satisfies (3). Suppose that g(-,») of the integrand in
(3) is almost periodic uniformly relative to » D =R and with
y as the covariance of bounded variation. Then the time series
X = {Xt,t?H{} with zero mean and covariance K belongs to

class (C)'class (KF) . More precisely,

R(h) = lim%:T-'th(t,tHh{)dt = limR (h) , heR (8)
Two 170 Tero

exists and defines a stationary covariance on R

Remark. If g(t,r) = gt , then the hypothesis of this propo-

sition is satisfied by that of the preceding one so that the main

TR e e———



result (4) is a consequence of (8). Using the special form of
this g , it is possible tc obtain (6) connecting v and the
spectral distribution F of R . However, in the present gener-

alicy, such a relation as (6) is much more involved.

Proof. By symmetry it suffices to consider h >0 . Now substi-
tuting (3) into R above and interchanging the integrals (this

is obviously legal)

v
-0 -0

Rp(h) = 7 17 2T g (e, )BT A P (9)

0
If S cR 1is any compact set, and g(-,x), 2€S , is a.p., then
it follows that g(-,\)gC-+h,x ), (A,x’)cSxS , is also a.p. So

for any fixed but arbitrary h , one has by a classical result

(cf. Besicovitch [12], p. 15),

Lim T8 1im e TP (6 ) BTERR, T 0aE = a(hin,n) (10) |
T T -0 O
exists uniformly in h . But it is clear that a(h;.,»") 1is |

bounded for all h=0, (A,»")5SxS since each a.p. function is :
bounded. So from (9) and (10), together with Dominated Conver-
gence, one gets

A

R(h) = limRy(h) = [° /7 a(h;n,n/)d%y(,0) . (11)
T

-0 =D

But for each T , RT(-) is clearly positive definite and hence

so is R(*) . Thus R(:) 1is a covariance. However, due to the

compactness of S and the uniformity involved in (10), it follows
that a(-;+,-) on RxSxS 1is a continuous complex function. From
this one easily concludes that R(:) 1is a (continuous) stationary

covariance and then the representation (5) is just the classical
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Bochner's theorem. This completes the proof.

Comments. 1. Evidently cne may prove an analogous result if the
time series is of discrete parameter. It should be observed that
the long argument of the harmonizable case of Bhagavan (cf. [3],
pp. 72-77) is really a specialized version of the existence of
the limit (10) and for the special g(t,») = elth (the '"charac-
ters'" of R ) the mean value is given by the values of (10) on

the diagonal (cf. [12]), p. 16, no. 4°) so that the simplifications
for (6) result. In the general case (6) no longer holds. Now X
is mean continuous, i.e. E(Xt-XS)2~O , as s—t , so one has

only:

R(h) = "7 a(h;‘a,‘n’)dzv(\_,‘» 'y = % eihxdF(x), h“R, (12)

-0 -0 -0

v

by the Bochner theorem. This F will becalled the associated

spectral distribution of X

2. The time series X = {Xt,tEE(} whose covariance K is
of type (C) (and E(X{) =0) for an a.p. function g(-,2) ,
uniformly relative to R , may and wili be called an almost

harmonizable series. This clearly includes the harmonizable

case. Under this generalization, one may profitably consider

the more inclusive Besicovitch functions g ( =BZ- a.p. of [12]),
a.p. uniformly relative to R , since for such functions the
desired limit (10) again exists. This follows from ([12], p. 93),
where one uses the fact that such g's form an algebra and then
Lemma 4 is applied there in a slightly modified form (and con-

sequently the arguments on pp. 14-15 of [12] hold). This

11
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extension is necessary to show, for instance, that the Brownian

motion (which is not harmonizable) is covered by the above. That

;|
|

A the latter is in class (KF) 1is easy to check directly as observed
in [1]. Similarly the Ornstein-Uhlenbeck process is in (KF) . Both
these are now almost harmonizable (g is not continuous, so 82
a.p. is needed!). It will be interesting to analyze this set
which is contained in class (KF)Jclass (C) . Here one should
perhaps also observe that, if g 1is Bz-a.p. so that a(h;ir,)")=0
as |x|+|n"|== sufficiently rapidly, then vy need only be of
bounded variation on each compact rectangle of the complex plane.

3. It may also be remarked that g of (3) can be more

general than that noted above for the existence of the limit in

% : (10). For instance, if g 1is locally (i.e. on compact sets)

| square integrable, then g(-,.)g(-+h,%) will be (c,l1) summable
E. (i.e., in the sense of first arithmetic mean of Cesaro) while v
is of bounded variation. Many good sufficient conditions are
available for it in the literature . This shows that

class (KF) class (C) contains even the almost harmonizable family

as a proper subset.

One of the key applications of the above result is in ob-

e taining conditions for the weak or strong law of large numbers. ¢
In a different terminology, this is equivalent to estimating the

mean (or the average of the mean function) of the time series X

consistently. These problems are natural analogs of the well

lowing is such an extension and it is substantially due to Bhagavan [3].

K
w
¥
&
i known stationary theory (cf. Doob [13], pp. 529-530). The fol-
¥
4
by
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Proposition 2.3. Let X = {Xt,t’H{) be an almost harmoniz-

able time series (which is mean continuous). Suppose that its mean

function m has the property that ag = 11mT m(t)dt exists
T- " 0

=1 MrXtdt (the sample path inte-

where m(t) = E(Xt) R = T“O

gral), then 1in1E(ﬁT-a0)2 = F(0+)-F(0-) , where F 1is the assoc-
T

iated spectral distribution of X (cf., (12)). In particular, if
F 1is continuous at 0 , then ﬁT is a strongly consistent esti-
mator of a, (or the series X obeys the weak law of large
numbers when the limit a, exists),

LunTm(t)dt , so that a
0

Proof. Let aT T 739 as T=> . Then

writing K(s,t)

aT , one has:

E(ﬁl‘r'ao)z = E[(ﬁlT'aT)+(aT'ao)] Z[E(mT'aT) +(a O) ]

= 5 TrTR(s,t)deds + 2(aT—a0) ;
T
- %U"'fTR (h)dh + 2(ag-ay)? (c£. (8)). (13)

The last term of (13) tends to zero, and the first term may be
simplified as follows. If Rq did not depend on T , then the
limit of the first term of (13) is the desired result, and it is
a classical theorem of Bochner (cf. Cramér [1l4], p. 25). Since
by Proposition 2 (since X 1is mean continuous), RT is a con-

tinuous positive definite function converging to a continuous

positive definite R which then has the representation (12), a

simple modification of Bochner's proof establishes the present case

13

Cov(XS,Xt) , the covariance, and noting E(ﬁT) =
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Let FT and F be the bounded nonnegative nondecreasing

functions representing Ry and R , as in (12). Then Rgp(h)-R(h)
uniformly for h on each bounded closed interval and these are

Fourier transforms of F, ,F which must then be uniformly bounded.

T’
Moreover FT~F at each continuity point of F by ([14], Thm.1l).

Thus
gijTRT(h)dh - jfmf%{TTeithdhdFT(t)
"N §i%igidFT(x) : (14)
Since §i%§giﬂsox as T-= ( 60x is the delta function) and
FT~F the result follows easily. 1In fact, for each ¢>0 |
;7SI g (x) = j'€+{jV§¥%§§ dFp )+ SIEGR x) . (15)

The first two integrals on the right side of this equation go tozero

2 in Tx 1
as T-» since Iilﬂ——4~s:— and F.(x) ssupF. ()<= . Let
Tx =T iy T ik

¢ bechosen so that (F(¢)-F(-¢)) - (F(0+)-F(0-)) <¢/2 and that

t¢ 1is a continuity point of F . This can be done since the
continuity set of F 1is everywhere dense in R . But |§l%§ﬁi,; A s

and if T 1is large then FT(e)-FT(-e) differs arbitrarily
little from F(¢)-F(-¢) , and it follows that the last term of (15)
differs from F(0+)-F(0-) by less than ¢ . Since ¢>0 Iis
arbitrary, one concludes that

1 T

.1 AT .
lim 5= "' Rp(h)dh = F(0+)-F(0-) = %ESQTL TR(h)dh - (16)

T &% o1

The proposition now follows from (13) and (16). Note that when

F has a jump at 0 , the estimator ﬁT (of ag ) is not

14
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consistent. This completes the proof.

Remark. Since the limit R and hence F are given only indirectly

from Rp s it is desirable to have conditions on [RT,T>O} that

will ensure the continuity of F at O (or at any given point).
This will be true if RT(h)~O as h-» wuniformly in T or if

:F|RT(h)|dh is bounded as a function of T . The first condition
0

ensures the statement in brackets (by the classical Riemann-
Lebesgue lemma) and the latter gives the continuity of F at 0
as the last part of (16) shows.

In view of the importance of RT and R above, the immed-

iate statistical problem is to estimate these functions, with the
consistency property, at least. (Assume m = 0 ; otherwise one
may consider the product moments directly.) Thus the natural

estimates are

R = L nT_h T = l T T—T
RT(h) T“O tht+h dt T“_nxt Xt:+hdt , (17)
where XT =X for O0=tsT , =0 for ¢t>T . Under the mean con-

t t
tinuity of the X , such that :IKZ(t,t)dt = | the estimator
0
ﬁT of (17) is well defined, E(ﬁT(h)) = Rp(h) ---an unbiased

estimator of R To fulfill the consistency condition, i.e.

T
for Xéclass (KF) , ﬁT(h)*R(h), hé¢R , in mean, one has to assume

3 somewhat more on X . The following sufficient conditions were

given by Parzen [2] (cf. also [1]). Thus consider:

(1) for each t , assume E(|X_|*)< -, (ii) if

Xt ) then o 1is Lebesgue integrable

p(t1stystqst,) = E(xtlxt X, ¥

"

15
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on each bounded interval of R |, and (iii) if Ct(v) =

nt ~ - Sl 5 =
~10COV(XSX ,XtXt+V)dt (which exists by (ii)), then lunCt(v) 0

t—ou‘)

stv
for each v =0
If (i)-(iii) hold then Var(ﬁT(h))~O as T-0 , for each |
h=0 , so that E(ﬁT(h)-R(h))2~0 . This may be checked by a E
direct computation (cf. also [2]). In [l] an interesting example
of a periodic covariance of a time series consisting of symmetric
bounded random variables is given which satisfies the above con-
ditions. The accuracy of the approximation of the estimator with
R was then illustrated by a numerical example. The reader is
referred to this instructive case in [l] to gain an insight into
the generality of the <class (KF) of nonstationary time series.
The next two sections will now be devoted to another class
of nonstationary series ( =processes) generated by certain
stochastic difference and differential equations for which a

different set of methods will be needed. The latter are related

to the ''correlogram analysis,' and these will be discussed.

P e
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SECTION III
NONSTATIONARY SERIES GENERATED BY DIFFERENCE EQUATIONS

(a) Motivation. If X = {X ,téR} 1is a stationary time series,

-
then the correlation function ¢(-) 1is given by pt(h) = o(h) =
Cov(Xt,Xt+h)/VarXt, and is independent of t . As a function of

h , i.e. of the lag, o(-) 1is taken as an indicator of the de-
pendence of X on X , = for large bh . Clearly n(h) = o(-hy,
lo(h)|=1 . Suppose that X 1is nonstationary, but is in class (KF)

In this case :t(-) depends on t , but for any a>0 , and h¢fR,

=T R(t, t+h)dt
limfp ,(h) = lim ——2r— =ML = F(h)  (say). (1)
T g T— T-av K(t,t)dt :
a

Here R 1is the same as in (8) of the preceding section with
K(s,t) = Cov(XS,Xt) . Since R(+) 1is a stationary covariance by

virtue of the fact that X¢class (KF), p(-) does not depend on

t or a . Further, several properties of the time series X are

reflected in the behavior of R and hence of 5 . In case that

X 1is stationary then ¢ = p . On the other hand, if limK(t,t+h) =
t-—oco

a(h) exists (which is stronger than being in (KF) ), then the
limit of (1) exists and one gets the same 5(:-) . This is a con-
sequence of known work in classical analysis. Motivated

by this observation, one may consider the behavior of ¢ for a

class of nonstationary time series where

D I et (2)
t VarXt 7
called hereafter the correlation characteristic of X . In general

17
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¢ 1is not a correlation function, but asymptotically its behavior
is that of the latter (because of (1)) at least for the series of
class (KF) . In this section the time series governed by certain

difference (and in the next section differential) equations will

be studied. Some of the following material (in both sections)

appears in a very tentative form in the author's early study [15].

(b) A setting of the problem. Suppose that the output of a noisy

communication channel follows a linear model of signal plus noise
type as follows. The output Xt at time t depends on the im-
mediate past up to k units linearly, ana then a white noise dis-

turbance enters. Thus

k
iglai(t)xt_i+st = 5. *e, , =1 | (3)

where ai(-) are some (non-stochastic) functions of time specified
by the type of channel. This model may also be used for a dynamic

economic situation where X s are called '"lagged values'" of

'
t-1i

the ''endogenous'' variable X, or sometimes ''exogenous' variables

also. Thus the signal St is a linear function of the past k

terms and f{¢_,t=1} areassumed to be independent identically

£
distributed variables with zero mean and a finite variance ( =32 :
say). Now to study the properties of Xt , the difference equa-
tion (3) may be solved by classical methods (due to D. André,
1878) and the solution is given by the expression:
t-1 3 t+§-l

X, - i§O~o(t,1)-.t_i+ i3 wlt, i)e. i » =1 ()

where Xi =cy, i=-k+l,...,0 , are the constant initial values,
18




i j-1
w(t,m) = 2 na, (t- Z k), O<m=t,k,=0 , (5)
k ootk §=L 55 =0 T
i

the sum ranging over all partitions of m into integers ki
(20) (cf., Jordan [16], p. 588). For instance, if c; =0 and
ai(t) = a; , a constant, then the complicated looking expressions
(4) and (5) reduce to familiar forms. To see this, let the

characteristic equation of the difference equation (3), namely,

k. o k-1_

X _al --Qk =0 (6)
have simple roots S ERRRRLOE Then (5) becomes
k — k

p(t,m) = p(t-m) = 2 B.\; , lsmst, 2 8.=1 . (7) 3
f=1¢ 4 =1 - :
The Bj's further satisfy !
;
L :
2a Bk =0, t=0,-1,...,-k+2 . {7} X
j=i J ] :

For a discussion of this case, see Mann and Wald [17] and the

author ([18], p. 330). Let us now specify conditions on the model
in order that the time series X = {Xt,tZI} be in class (KF) ,
and point out instances when it is not in class (KF) but for
which 5t of (2) has a limit as t-=

Since for an asymptotic study the initial values are not
important, set c; = 0, i=0,-1,...,-k+l in (4). Suppose further

that the ai(-) satisfy

L 2
Zg]w(t,m)l s M<» =21 . (8)

m=

Then from (4), since E(Xt) = (0 , one finds

19
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r(s,t) = EXX,) = - Zo(s,me(c,m , luss=t ,
m=0
S

= 32 2 w(s,m)p (s+h,m) . h=t,s
m=0

It follows from (8) that |r(s,s+h)|sM for all h , and sz1 (by
the Cauchy inequality). Hence, for each h=0 ,

N-1
. N-h 1
lim e = 2 r(s,s+th) = R(h) 9)

e s=1
exists (by the (c,l)-summability method), and by symmetry for all

h . This implies the following statement.

Proposition 3.1. If a second order time series X = th,tzl] is

generated by the equation (3), and the ai(-)'s satisfy (8),

then the nonstationary series X belongs to class (KF)

It should be observed that the condition (8) does not in-

volve any mention of the roots of (6) even when the ai’s are con-
stants. To understand the significance of (8), it is useful to
specialize. Let the a; be constants and suppose the roots of

(6) lie inside the unit circle of the complex plane and are dis-

tinct. Let & = qulle so that s<1 . Then (8) is automatic
: j
- since
E = 5 e ) 2
oy i 2 -m)
n Z loe,m)|® = 2 lote-m)|® = 2|l Zeas™]| by (),
: m=0 m=0 m=0!"j=1 '
k 1- (O xs )t
! 5 |s.s.,|( (J.J ) )
joir=1 3 A
k 2i(EEL) k
+
RN LN S 2y T 8.8,/ ] =My<o
80 =1 1-6 1=6° 3,5'=1 4 J

20




Thus the time series generated by (3) with constant coefficients
having all the roots of its characteristic equation distinct and
lying inside the unitcircle, belongs to class (KF) . On the
other hand, if at least one of the roots of (6) is on or outside
the unit circle (i.e. 8>1 ) then the resulting time series gen-
erated by (3) is nonstable or explosive and will not be in class
(KF) . This will now be illustrated by a family of time series,
investigated in the literature.

Thus in the constant coefficient case of (3), let s >1

5 = maxl\j] of (6). Then under the same (remaining) hypothesis
3
as above,

E(|X 2t

2
12 -

lo(t,m) [% = 0(s

) (10)

cr
&

so that (8) is violated strongly. This was shown by the author
([19], Lemmas 8, 15). Moreover, by ([19], Lemma 9) one finds

& Cov(Xt,X

i e’ |- (h-2)
vVar t

(F0 ) g . (11)

A similar conclusion holds if ¢ = 1,k =1, for (10) ( E(|X_|%) =
O(tz) ). These two cases imply that the limit demanded for (KF)
of Section II cannot exist, and so these time series do not be-
long to <class (KF) . This example may be taken as a further
justification of Parzen's term 'asymptotically stationary' for
the series in classes like (KF) (cf. [2]).

The variable coefficient case of (3) was found to be of in-
terest in some meteorological applications (cf. [5]). Consequently,

a class of simple variable coefficient schemes will be investigated

21
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in some detail below. They will throw some light on the behavior

of the resulting time series.

(c) A first order model. The correlation characteristic, given

by (2), is designed to reflect the dependence of Xt on Xt+h

for large t and h . It was noted that this behaves asymptot-
ically (as t-=» ) as a correlation function for members of class
(KF) . How does it behave in the "explosive' cases? Equation (11)
gives an indication of the constant coefficient case. Here the

variable coefficient model of first order will be considered, for

a striking illuscration. This is also the one proposed in [5],

describing a times series with linear trend, namely,

= aX, ,+¢ =a, + = :
X, » ¢ » 8 T agtta; , t l,aO#O (1L2)
The series {at,tfl} consists of uncorrelated random variables
with mean zero and variance 52 X, =0, tsO0 (i.e. the initial

i t
values are zero).

The solution of (12) may be obtained by iteration. Alter-

t-1
5 ’ nately, let p_ = i;Oai so p; < ag - ILf we set Ty Xt/pt ’
} (12) becomes
¢
\ Yosq°Y, -:t/pt+l A £=0 . (13)

If wewrite X =Y p, ,the solution of (13) (hence of (12)) is:

3 t
v X, = iibpt(qi/pi+l) ' A%
: Hence for h -0 , the covariance is given by
23 t 2 1
5 COV(XL’Xt+h) = PePen 2 5 » ] (15)
L= PE s
22
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Since Var'Xt is obtained from (15) for h =0 , (2) becomes:
t+h-1
e(M) = Py /P = I a; . (16)
L=
This can be made arbitrarily large for large h , for appropriate

ag,a; (e.g.if ]ao'+alt]>l). On the other hand, the actual cor-

relation ;t(h) 1s

1
t t;h 2 \Z
(h) (1 =03 11—1/ 1+l) 2 (17)
and ]gt(h)lﬂa(h) (#0), as t—= . Thus for such time series

the correlation does not tend to zero for large t and large h
The correlation characteristic Et(-) magnifies this phenomenon.

The above computation also implies that the correlogram ( = the

graph of (h,at(h) ), hz0 , for any t ) does not dampen as the

lag h 1increases if the coefficients contain a linear time trend.

Since the same character is maintained in using St(h) instead
of :t(h) and since St(h) is computationally simpler than

ot(h) , it will be considered in what feollows for a structural

study of the "explosive' time series. The resulting graph may be

called an approximate correlogram.

If the linear trend is replaced by the reciprocal trend,

] : ar
B l.e., at—aO+T,

computation one finds that

t=z1 , then after a similar but more tedious
St still exhibits nearly the same
properties unless more stringent conditions such as (8) are im-

posed. The details are omitted.

(d) Limiting behavior of normalized sums from class (KF) . The

behavior of series given by (3), subject to a condition implying




(8), is reasonable in that such series obey the central limit
theorem for dependent variables. Let Sn = X1+-~-+Xn, Xi=0,iSO

Suppose that (i) the ¢, 's are independent and identically distributed

t
with means zero and variance :2 , (ii) the wo(t,m) = o(m) is

independent of t (which is implied by the case that ai(-) of
(3) are constants), and (iii) Z |m(m)|'\b . Under these con-
m=1

ditions the following assertion obtains:

Proposition 3.2. Let the time series (X _,t=1] be generated by

L t )
(3) and let, moreover, conditions (i)-(iii) hold. Then
2
=0 e
2 . e - L ax 7
llmP[SnaxJVarSn] . © du . (18) |

n—= -0

Thus, S = obeys the central limit law.

This result follows from some known results of Diananda and

s n
Anderson (cf. [20], Thm. 7.7.8). In fact, X_ = 2 p(m)e =
n —- n-m
Z f(m)in_m where »(m) = n(m), l<sm n , = 0 otherwise. Since the
m=0
r VarSn
‘ =, are independent and identically distributed, -«1 ; as a
4
f . simple computation shows. This is sufficient to invoke the above

cited theorem.

Ba The restrictive condition (ii) may be relaxed in some cases.
f If a,(t) = a.-+é.t'2, t=1 , then
i i i
|
X = 1=1
w(t,m) = 2 a, (t)a, (t-k,)--.a, (t=- 2 k.) , k.=0 ,
ky+ - otkg=m Ky Koy L ks j=1J 0
=Da, a,_-a - 0() =im -0 . (19)
B i t t
24




Hence

£ 1 & \
X, = ﬁ:ln(m)ct_m"fO ;7 6:1€t-m/ s (20)
One checks that the variance of the last term in (20) is o(z%d
It has mean zero. So if Sn = §n‘+§é , corresponding to the
decomposition of (20), then §é~0 in probability and :Sn,nzl?
satisfies (iii). Hence, from a form of the classical Slutzky's
theorem, S~ and §n have the same limit distribution. Thus the

following result holds:

Proposition 3.3. Let {Xt,tal} be given by the scheme (3).

Suppose that conditions (8) and (i) hold, where ai(t) = ai+§it-2

If 5(m) of (19) satisfies (iii), then the series obeys the cen-
tral limit theorem, i.e. (18) holds for this series.

It is clear that other conditions can be formulated on the
coefficients ai(t) , to obtain corresponding results. Assuming
that the et's have four moments, this result with a sketch of
proof was indicated in [15], using Lyapunov's theorem somewhat on

the lines of Marsaglia ([21], Thm. 3). However Parzen ([22],

p. 254) has a better result on these problems.

(e) Approximate recursion equations for sample covariances.

Since the difference equations with coefficients depending line-
arly on time have been noted to be of interest in describing trend
variation (cf. [5]), it will be useful to have recursion formulas
for computing sample covariances from data, even though the serier

is not in class (KF) . Here an account of this problem will be
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presented for a first order scheme. Similar results for the
higher order schemes are much more involved computationally. The
recursion equations are just the sample analogs of the ancient

Yule-Walker equations of the autoregressive systems (cf. [20],

p. 174). These (sample) equations are useful for a descriptive
study of time series.

Consider a time series defined by the equation

Xin (a -ialt)X teiq t20 , (21)
where et's are independent, identically distributed mean zero
random variables with finite variance, X_ = 0 for ¢t<0 so that

E

there are no records of the series for the past and it starts

from scratch. Here ag and a, are unknown parameters and can
be estimated by the least squares method. Thus a simple minimiz-
ation based on N observations gives éON’élN as the estimators

of ag,a; by the following equations:

& (2 exd) - 2 el 2
a = tX 2s tX = tX, X X 5
ON DN‘ bl Ce+1¥e) \ wl - Ve t/\ o - t+1/
LE7 & ol o N 2y 5
a = Zr EXR M 2 XX X /\li‘ 2 EX X 3 (22)
IN  Dyl\.5 e\ gl E e+l \t=l €/ ey € e+1/ |
N 2 N
< 25 Lo 2
Dig = 2y €X ) - (7))( )\ Zag
N o A - £ \imp. E

It is desirable to establish the consistency of these estimators,

i.e., to show that éiNqa. i=1

i ,2 , in probability as N-= . This

is true if a; = 0 . The work in ([18], Thm. 5) and [19]) indi-
cates that the general statement is true under some conditions on
1

the distribution of €p S . The actual details are nontrivial

26
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and will not be considered here. Since the general behavior of

the series can be understood to some extent from the properties

of the correlation characteristic (or the approximate correlogram

of the series) the sample product moment equations will now be

derived for this model. This already shows the difficulties involved.
It will be convenient to adopt the following notation, from

[5], for simplifications. Thus set (with Xt = 0,t<0 ) for t=0

b

th = Xt 4 Z2t = tXt » B = 1,5l = -mag,by T -ay (23)
Then the equation (21) becomes
Spfiest F51%1¢ TP2%2 ™ Cea1 - =0 . (24)

For the product moments, the following additional abbreviations

are seen to be useful.

N N;k N N\-k
E' = Fe.e B m BB F. - =iz .,
k gw] € t+k ik g=] it it+k
N-k N-k
g, =« Tz 8 g . = L
12 k g=1 1t72t+k ? 21k t;l 2¢%1e+k - (25)

Since g = 1 , using (24), one gets after a small computation:

8 1STker + (IH]IST + 8 STy + 558y +
82 (5 2k-1"551141) + 0152 G150 = By - (26)
But STZk = Sglk-+kSTk . So (26) can be simplified as:
18Tkt 511 (L8 16,Kk#6T) + STy _; (61 +(k=1)5,) +
59 (89 11ce1 +2615 14 +S7 101 +5250] = By - (27)

This is the sample analog (for k-1 ) of the Yule-Walker equation

N

of [20]) above. Note that fEt,

N>k} 1is a series of uncorrelated
random variables.

27
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If the "initial point" &, of the linear trend is known a

priori , then (27) can be recast in a better form. For then, if
N-k
2 e
t=1

we set Y =X _+5,X Y

. ¥ )
t eP01%ea1 2 T T XM X, > Uy t+k e+l

2t-1?t+k] , (27) can be expressed after a small computation as:
. o N N N = =N
515141 T S (1¥6185K) = Sypeyy (8)-(k-1)85) = Sppp = Qpeyy - (28)

Treating QTk's as the correlated disturbance, one notes that the
product moment equation of the first order scheme (21) (or (24))

is a third order difference equation whose coefficients depend

1 8 B 1.
N-K 51k » Q% = N-kQk » then (28)

reduces to an equation of sample covariances:

(linearly) on the lag. If CE =

N N PR e
$iCheny * UIEI8ROG, = (B, SRR M08 " S T Uk - 1293

Taking expectations of this equation, one gets the Yule-Walker
relations. If 8y = 0 (so there is no trend), then (27) and (29)
reduce to a corresponding known (standard) case (cf. [20], p. 124).
Similar considerations with a reciprocal trend (i.e. a, =
ag + %} for (21)) lead to the product moment equations, corre-
sponding to (27) or (29), with coefficients depending on the re-
ciprocals of the lag. (This and a second order scheme were con-
sidered in [15], but the computations are too long for a treatment

here.) From (29) one can easily obtain the correlation character-
N

& ¥ ~ Ck

18t ic :N(k) e and then graph the approximate correlogram.
0

An explicit expression for this can be obtained from (29), by the
method indicated in (4)-(5). A formula for CE is given below

from (29) without the intermediate computation. Let f, = &
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£10) =1 % 685k = L4kaga) , £y(k) = -¢) +5,(k-1) = ag-(k-1)a

0 e

and f3 =1 . Then

k
N =L -
. = mglfom(thl(kl) "'fti(ki))Qk-m . (30)

where (i) ¢y+-4ty =m, (i) ky =k, ky = k-t), ky = k-t -t,
etc. The graph {(kl,SN(k)),ISk<N} , for large enough N , gives

an indication of the dependence behavior of the time series de-

scribed by (21), by the earlier treatment.
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SECTION IV

SERIES GENERATED BY DIFFERENTIAL EQUATIONS: FLOWS

(a) Introduction. The preceding analysis leads to the continuous

time analog (or the stochastic differential equations case) of the

problem involving again nonstationary time series. This is useful
both for a comparison with the discrete case above, as well as
for an independent study. It also brings up some interesting new

problems.

! Let X L EET T =R} be a continuous parameter time series

L t )
(i Xt and X(t) are synonymous) governed by the differential

equation:
i
d_X(2t_l+a(t)“—%§Et-l +b(E)X(t) = =(t) (1)
dt

where {=(t),t4T} 1is the white noise disturbance and a,b are
real functions on T . By definition of white noise, =(t) is
the (generalized) derivative of Brownian motion {B(t),t<T} ; and

thus (1) is a symbolic equation which cannot be interpreted in

the classical sense of differential calculus. (Such a problem
7 does not, of course, arise in the discrete case.) However, the
f, classical computations carried out formally can be justified (in
5 the integrated form) with the concept of a stochastic integral
i; replacing <(t)dt by dB(t) , and this will be made precise

below. Potential applications of this mcdel abound. Taking a = 0 ,
b(t) = b’+h"t , Hartley (6] indicated an industrial application
and carried out a correlogram analysis of the X(t)-series using

classical methods (and formal computations). In fact, assuming

30
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(in the calculus sense), he has

that the =(t)

carried out the analysis using "Airy Integrals' and then studied

is integrable

the covariance characteristic. [In a conversation at the IMS meet -

ings in Ames, Iowa in 1957, he mentioned that the Weber differential

equation method would be better suited for such a problem.] If

a,b are constants, then a velated problem was considered by
Nagabhushanam ([23]., p. 482) where X(t) is called a '"primary
process' obtained by an inversion. Since the Brownian motion is
nondifferentiable in the classical sense so that the =<(t) of (1)

does not exist, a slightly different route will be followed here

to validate such an analysis for a solution of (l).

(b) A general second order problem. The method of attack here

is quite simple. First consider the problem with a formal manip-

ulation and express the solution in terms of an integral. If we

replace < (t)dt by dB(t) , where {B(t),t€T} is the Brownian

motion, and then interpret the integral as the stochastic in-

nonstochastic (or "sure') function relative te Brownian

tegral of a

motion, the solution is rigorously definable. [Of course, the

¢ (t)-process will not be as general as in [6], but the present
assumption will be in force throughout this section. For a rigor-

ous treatment, some such restriction is necessary. |

The differential equation (1), written symbeolically as

dX(t) + a(t)X(t)dt + b(t)X(t)dt = dB(t) , (2)
is then regarded as the equation leading to a well-defined solu-
tion, where X(t) = %% To make this more precise, let T = !ao,ho)

31
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a bounded interval, and a(-),b(:) be continuous real functions

A : ~a(t) b(t)j ._B(t)z §
on i A Set Q = X » A(t) =L _! 5 W(t) = 1 " N T‘(t) = ]
-1 0 =i
_-t(t)l M0 (i) 5 |
’ | and Z(t) = L J . Then (1) may be expressed compactly
=S X(t)
as:
dZ(t) + A(t)Z(t)dt = n(t)dt = dW(t) . (3)

To solve this (vector) differential equation with a standard method
in the classical theory of ordinary differential equations, consider
the 2-by-2 matrix differential equation associated with the homo-

geneous part of equation (3), i.e., the (nonstochastic) equation:
dy(t) = Y(t)A(t) , teT, det(Y(aO))#O , %)

where ''det' stands for determinant. Then premultiplying (3) by

Y(t) and using (4) one gets
£ (0)2Z()) = Y(E)7(t)
so that formally one has the solution of (3) as:

n

z(t) = Y(0)™ [ v @du+y i (0)v(@)z () (5)
b =0

The fact that Y(t) satisfying the equation (4), if nonsingular
;i for one t€T , has the same property for all t<T 1is used here.

This is because (4) implies det(Y(t)) = det(Y(ao))-exp(;;trace(A(u)))du)

(cf. Coddington and Levinson [24], p. 28). Thus (5) is well de-
fined and Z(t) 1is obtained as soon as Y(t) is solved from (4).

1

Since Y(t) is bounded for each t , it can be taken inside

the integral also. Thus (5) can be expressed as:
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t
z(e) = [y y@aww) + vl (e)Y(agz () | (6)
a
0

where the first term on the right is now rigorously defined as

the stochastic integral of the first kind (see Doob [25], p. 352).
The uniqueness of the solution is immediate for the given initial
condition Z(ao) , because if Z is another solution, then 2Z-Z
will be a solution of the homogeneous equation %%-fA(t)U(t) =0
with U(ao) = 0 as the initial condition. This is a nonstochastic
equation and the standard theory implies that U=0 1is its only

solution. Thus Z =Z . Hence it remains to find Y(E).

Since (4) is a nonstochastic equation, one can apply the

pOs
W

classical Picard method of approximation. Writing A = A , Y = Y

( * for transpose) and integrating (4), one finds
~ ~ t ~ ~
Y(t) = Y(ap) + S A@)Y(u)du . (7)
a
0
? Now substituting for Y and iterating, one obtains
r: pron ~ E ~ ~ g—- tnl"' tn’\-l’“’ o
Y(t) = Y(ao)-i-‘J A(tl)Y(ao)dtl+---+u A(tl)~ A(tz)-u ] A(t}QY@%pdtn-ndtl
b 20 20 20 a0
]
I§ Tt Rn ’ (8)
F = where
4
3 t tﬂl~ tﬂn 5 -
. Rn _5 A(tl)é; A(tz)---é A(u)Y(u)dudtn---dtl
§ 0 0 0
>f By hypothesis a(:) and b(:) are continuous on the compact in-
terval T . So |A(t)]| = Jtrace(A(t)A(t)) = M<~, t€T , and
similarly | Y(t)| sN<» . [Here N 1is obtained as follows. Let

Y1:Y2 be the linearly independent pair of vector solutions of the
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homogeneous equation of (3). Then these are continucus on T

L NL is the upper bound on the norms of the vectors Yis
i=1,2 , then Y = (yi.yg) in (4) so that X2 N; =N .1 Con~
sequently
n y I
n (t'do> n (D-HU)] =
Rn‘ M'N B e 2 M'N e S EETE . (9)

Hence Rnﬁﬂ uniformly in t as n-» | and the series in (8) con-

verges absolutely and uniformly and defines a soluticn cf (4). In

E
particular, if a(t,to) = " A(u)du , then
=
0
o v R , . )
J A(tl)é A(Lz)dtzdtL = 2 oeh g ‘J‘A(tl)A(tz)dtzdtl ,
) 0 b i s o
=il .\.Ll(tl,t,z}'é(tz)'dt?_ = a,(t,a,) , say.
anStsst
5
E o tal'“’ t-az“
Simi . (E.a.) = : A(t,)dt,dt,dt, . Then (8) can
imilarly xy(t,a,) J A(Ll)t A(Lz):l A(Lj)L.tji ,dty Then (8) can
40 %9 %0

be expressed more conveniently (by setting 1O(t,a0) = identity ) as:
Yo(e) = ¥(t) = J:Oxn(t,ﬂo)Y(ao) : (10)
As yet no special properties of Brownian motion, other than
the definition of (6), were utilized. Let Z(ao) = C be a con-
stant (nonstochastic) initial condition. (The existence and
uniqueness of the solution of (3) rigorously holds if only Z(ao)
is independent of B(t)-B(ao) . However, this is not sufficient
tor the following analysis.) Also the continuity of a(:) and
b(*) 1is not crucial. 1f a(-),b(-) are integrable on T

, then
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one sees easily that the bound in (9) holds (cf. also [24], Probtlem

L, p. 97), and the rest of the argument is valid. Thus one may {

state the following simple but important result. |

Theorem 4.1. let T = [ao,bo) be a bounded interval and BiCEN JEET]
be the Brownian motion. If {X(t),téT] 1is a time series generated
by (2) with a(:-),b(-) as the (Lebesgue) integrable real functions
on T , then there is one and only one such series for each initial
condition X(a) = c X(a) =3c

IX(L) i

where €y,c, are real constants.

Ji 2 2

The solution Z(t) = of (3) is given by (6) where Y is

=t
defined by (10). Moreover, {Z(t),t€T] 1is a vector Markov Gaussian

time series, almost all of whose trajectories are continuous.

Proof. Because of the preceding discussion and calculations, only
the proof of the last statement remains. Note that by the classi-
cal theory, the function Y:T«ﬂf‘—{oi is contlnuous and so also
is Y-l . By some well known properties of the simple stochastic
integrals (cf. [13], Ch. 9) the integral in (6) is a continucus
function of t with probability 1 . It follows that the Z(t)-
process has almost all continuous trajectories with values in ki

By definition, the integral in (6) is the mean square limit

n

of approximating sums of the form S Y(Li)(W(ti+1)~W(Li)) , where
i=1 :

g <E s vealt S 3 sinc . is nonstochastic and

ag tl L2 tn t . But since Y(Ll) is nonstochastic and

W(ti+1)-W(Li) are independent Gaussian vectors, the above is
Gaussian distributed. Hence its limit-in-mean (i.e. the integral)
defines a Gaussian random vector. Since Z(a,) =C , it follows

from (6) that the [(Z(t),t¢T} 1is a vector Gaussian time series
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having almost all continuous sample paths. Finally, (6) is true
if a<t 1is replaced by ¢t,t+h (h>0), apairof pointsin T . Thus
kb -1 -1
Z(t) = | ¥(tth) "f(u)dW(u) + ¥ “(tH)¥(t)Z(c) . (11)
&
By the preceding definition of the integral, Z(t) 1is determined
by Y(t) and W(u) for agsu-t only. Since W(:) has inde-
pendent increments, (ll1) is determined by w(ti+l)—W(ti) for
t<ti<ti+1€t+h , and is independent of Z(u) for a<u<t . This

means for each interval A « R?, L=ty ,

Plz €A|Z_,ssty] = P[Z €A|Z4] (12)

with probability one. But this implies the Markovian property of

the Z(t) , and completes the proof.

Remark. 1In general the Z-process need not be a martingale and
the X-process need not be Markovian. Note that the cases a(t) =
a’+a’t and b(t) =b’+b”t (the linear trend, and similarly
the reciprocal trend if T = [ao,bo],ao>0 ) is included in the
above treatment. Another model treating seasonality (i.e. a(t) =
al+a2 sin & , b(E) = bl +b2 cost ) of the coefficients considered
in (5], p. 334) is also included. However, the latter case has
some special properties worthy of a special treatment, but is not
considered in the present paper. It is also clear that the above
theorem is valid without real changes if the order of the equation
is n=2 . 1In that case the Y(t) and A(t) are n-by-n matrices.
From (6) it is easy to calculate the mean and covariance of
the Z(t)-vector series. In fact, if m(t) = E(Z(t)), 2(t,s) =

Cov(ZS,Zt) , then from the condition that Z(ao) = C , a constant,




&

one has:
m(t) = Y‘l(t)y(ao)c . (13)
and

s, t) = E[(Z(s)-m(s)) (Z(t)-m(t))"]

Il

n

£ 1 g ol %
E[CY(t) "Y(u)dW(u)) (" Y(s) "Y(r)dW(r)) ]
0 20
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where an elementary property of the stochastic integral is used
in the last line. If D(t,u) is the first column of Y(t)-]Y(u)
then (14) can be written as:

s A t J(
(‘ij(s,t)) =2(s,t) = [ D(t,u)D(s,u) du . (15)

20
This is the 2-by-2 covariance matrix function of the vector Z(t)~

series, which is (hermitian) positive definite for all a s,t=b

0
From this it follows immediately that the covariance function of

the X-series ( r(s,t) = Cov(XS,Xt) = ~22(s,t) ) is given as:
Sﬁt %
E(s,t) = (D(E,u)Di(s,u) )22du (16)
20
where ( )22 is the second diagonal element of the matrix. 1If
d(s,u) 1is the second element of the vector D(s,u) , then (16)
is just
th
r(s,t) = ) d(s,u)d(t,u)du . (L7}
a
0

Thus the time series determined by (2) is always of «class (C) .

(14)
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It is interesting to note that the covariance function r of
(17) is really the Green function of the homogeneous ordinary
differential equation of (1) with zerc initial conditions, i.e.
ZEE) = &(L) = 0 at t£= a, This useful result may be derived
as follows.

Consider the homogeneous equation

3. 5
Leo) = SR ) B hoxe) =0, (18)
dt :

where X(a) = Cys X(a)

= ¢, , as the initial data. If Ui(a) =
X(l‘l)(a) where X(O) =X , X(l) = k = %% , then by the standard

theory (ctf. [24]) the system L{(X) = 0 and Ul(aO) = 0 has a
unique solution, say Vl . Similarly L(X) = 0 with Ul(ao) = (,
Hz(u”) = 1 has a unique solution V2 . IEf G(',*) is the Green
function associated with L(X) = 0, X(aj) = 0 = k(ao) , then the
unique solution of (2) with the initial condition Z(a) = C is
given (cf. Ince (26}, p. 257, and the discussion on the sto-

chastic analog following (2)) by:

& 0
X(t) = [G(e,u)dBlu) + C V(t) , (19)
a
0
V14 Cq
where V =  _ and C = | ,~| . Here G 1is continuous on TxT
L\‘Z_J !—(Jz.J

and differentiable (in general (n-1) times for the nth order

e : G ¢ y -
F i equation), and 3t is continuous in (t,u) for the range
1 t-ub M
¢ a i1 . MoOreover
. O o b

%%(u+0,u) - 2%{u-0,u) =

Thus from (19) one has ml(t) = EX(t)) = C*V(t) , and
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sAt
r(s,t) = Cov(X(s),X(t)) = . G(s,u)G(t,u)du . (20)
a,
A comparison of (19)-(20) with (16)-(17) shows that G(s,u) = d(s,u)

The form of this equation should also be compared with a result

of Cramér ([27], p. 18) in terms of which X(t) has multiplicity

one. (For the definition and properties of the latter, cf., [27].)
The preceding work may be summarized in the following:

Theorem 4.2. The vector Gaussian Markov process Zi(t) ,teT} of

Theorem 4.1, has mean and covariance given by (13) and (15). The

solution process {X(t),t€T} of (2) is given by (19) with its
covariance function by (20) or (17), and it is of type (C) . If
moreover, the Green kernel G(.,.) of (20) satisfies an appro-
priate growth condition, in particular if G(-,u) is a.p. uni-
formly in u on compact subsets of T

, then the solution process

(X(t),teT} is in class (C)Nclass (KF)

Remark. TE a(t) = a, *a,t, b(E) = hl-szt , then the resulting

solution process in the above theorem, while being in class (C) ,

"

will not be in class (KF) . In any case this sclution has '"multi-

5

plicity" one in the sense of ([27], p. 11). This problem and the
work of Section I1 above show that the classes (C) and (KF)
are not included in each other.

In view of the preceding result, it will be of considerable
interest to analyze and extend the detailed treatment of [8] from
the constant coefficient case to the general case which is a
solution process of (2). Many of the results of [8] have non-

trivial extensions to the present one. It needs and deserves a
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separate treatment and will not be considered at present. In
the next paragraph a special problem is discussed for the properties
of its correlogram, as it enables a better appreciation of the

time series generated by (2).

(c) A special case. Let a(t) =a , b(t) =b , téT . Then Y(-)

a b.
can be calculated explicitly in (10). For, A(t) = = [_1 O‘ so
% 2 ety
that a(t,to) = A (t-to), az(t,to) = A ey e etc. and hence
n
: > 0 (t-ag)” k%
Yi(e) = ZAT P Y (ag) = (exp(t-ag)A )Y (ap)
n=

Consequently (6) can be simplified to

t L (a,-t)A
z(e) = feE W) +e 0 ¢, (21)
a
0
where the facts that euA and etA commute and Z(ao) = C were |
d,; (t-u) d,(t-u)
’ y (t=u)A _ /71 2
used. From this, if e \d3(t-u) d4(t-u)) , then (21)
yields
: ¢
X(t) = P dl(t-u)dB(u) + dl(ao-t)cl + dz(ao-t)cz 5
* 0
5
‘, X(t) = P d3(t-u)dB(u) + d3(a0-t)c1 = da(ao-t)c2 : (22)
i 0

Comparing these equations with (19) one obtains G(t,u) = G(t-u) =
d3(t-u) , and G’ (t-u) = d,(t-u) where G is the Green function
associated with (2). (In the case of constant coefficients, G is
only a function of the difference of its arguments.) The covari-

ance is thus simplified to
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SAt
r(s,t) = " G(s-u)G(t-u)du . (23)
0

Even now r 1is not a stationary covariance, and the solution 1
process need not be in c¢lass (KF) without further conditions.

In the particular case that a =0, b>0 in (21) with T =
[0,2) , the covariance (23) can be simplified further. Then,
d3(t) = sin/bt , and

S/’\'.t
r(s,t) = o sin /b(t-u) sin /b(s-u) du . (24)

If t = stk , then the correlation character Ss(k) = r(s,stk)/r(s,s)

is reduced to:

s
{)sin /b (k+s-u) sin /b (s-u) du

s s 2
.sin” /b(s-u) du
0

_ 2s/bcos/bk+sin/bk-sin/b(k+2s) (25)
2s/b -sin2/bs ;

For large s , ES (k) therefore behaves as cos/bk , and hence

the approximate correlogram is essentially a harmonic curve. The

above computation also shows that for small t , «r(t,t) =
# . b, 3
Jsin” /budu - 3t~ . Similar estimates can be obtained for
0
74 (t,t) . Such calculations were carried out in ([8], p. 135)
i using different arguments, and both these results agree. The
¢ Gaussian character of Z(t) , when a(t) =a , b(t) = b.-0 , and
various moments have long been established in [7], with classical
techniques. It will thus be interesting to carry out the corre-

sponding study for the case of variable a(:),b(:) , e.g., if
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these are periodic or more generally (real) analytic functions.
I'he result of Theorem 4.1 admits substantial extensions for
vector valued processes and the coefficients can then be matrix
valued integrable functions. Such an extension has been carried |
out by Goldstein [9] using suitable abstract methods. His re-
sults subsume all the previously known existence studies on the
problem. The natural question here is to consider (and this ap-
pears more difficult) his results in classifying the solutions in

the sense of Dym's work.
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